
A Pipeline Functional Language for Stateful Packet
Processing

Nicola Bonelli, Stefano Giordano and Gregorio Procissi
Dipartimento di Ingegneria dell’Informazione

Università di Pisa and CNIT
Via G, Caruso 16, 56122 Pisa, Italy

Email: {nicola.bonelli@for., stefano.giordano@, gregorio.procissi@}unipi.it

Abstract—The evolution of commodity PCs towards multi–
core processing platforms equipped with high–speed network
interfaces makes them reasonable and cost effective targets for
the implementation of generic network functions. In addition, the
availability of software accelerated I/O frameworks provides a
convenient ground for running a broad variety of applications,
from simple software switches to more complex network systems,
with near hardware–class performance and the flexibility of a
software approach.

Most network functions can be implemented by composing a
set of elementary operations into processing pipelines to be run on
top of multiple processing cores. In this framework, maintaining
the flow consistency is crucial to enable stateful operations in the
processing pipelines.

This paper presents Enif–Lang, a functional language for
programming network pipelines specifically targeted at multi–
core scenarios. In addition to a large set of functions for generic
packet manipulation, filtering, steering and state management,
the framework is built upon an abstract model that provides
state aware packet splitting to prevent inter–state sharing and
enable consistent stateful parallel processing on–top–of multi–
core architectures.

I. INTRODUCTION

The rise of Software Defined Networks (SDN) and Network
Function Virtualization (NFV) as the winning trends for the
design and development of network functions and services
has naturally switched the focus of the research commu-
nity towards network virtualization and softwarization. Both
paradigms propose a dramatic change in the way network
operations and services are conceived and push programma-
bility and reconfigurability as crucial keywords of a new
generation of network devices. At the same time, the evo-
lution of commodity hardware towards powerful multi–core
platforms together with the wide availability of a new family
of multi–gigabit network interfaces point to off–the–shelf PCs
as viable alternatives to dedicated hardware devices for the
development of network functions. In addition, a flourish
literature about effective I/O operations has lately proposed
accelerated engines such as PF RING [1], PF RING ZC (Zero
Copy) [2], Netmap [3], DPDK [4] and PFQ [5] that allow to
handle packets up to 10+ Gbps line rate.

In this scenario, the adoption of commodity PCs as tradi-
tional network nodes – such as switches and routers – as well
as more complex network middleboxes implementing specific

services becomes an almost natural consequence. In parallel,
a broad variety of programming models and abstractions have
been recently proposed for the data plane of generic network
nodes.

Indeed, starting from the basic (stateless) Match–Action
paradigm proposed by OpenFlow [6], several other approaches
(e.g., [7], [8]) have been proposed to enable stateful pro-
cessing within network devices. However, stateful operations
do not straightforwardly cope with parallel processing when
performance matters. The common issue is represented by
the possible state sharing among flows processed by different
cores. Such a condition becomes even more critical when
multiple applications run concurrently on the same set of
network interfaces.

This paper presents Enif–Lang (Enhanced Network
processIng Functional Language), an easy, expressive and
robust programming language specifically tailored to network
traffic processing for multi–core PCs running Linux OS.
Originally born as PFQ–Lang [9], [5], the language has
evolved quite a lot lately and the current version implements
a reference model that enables and automates state persistent
concurrent programming. Like any functional language, Enif–
Lang supports high-order functions (functions that take or
return other functions as arguments) and currying, that turns
functions that takes multiple arguments into functions that
take a single argument. Moreover, the language includes
conditional functions and predicates to implement a basic code
control flow.

Since Enif–Lang is used to describe and specify packet
processing pipelines, it plays a similar role to that of the
lower level P4 [10] language and to the imperative language
Pyretic [11] (that belongs to the Frenetic [12] family of
network programming languages) in describing the data plane
logic of an SDN network or to that of Streamline [13] to
configure I/O paths to applications through the operating
system. In addition, VPP [14] and eBPF [15] recently proposed
alternative approaches for packet processing and data plane
programming.

The rest of the paper is organized as follows. Section II
presents the working scenario of Enif–Lang and sketches
the main features of the language. Section III presents the
language description of pipelines and elaborates upon stateful
processing. Finally, Section IV presents two practical use cases978-1-5090-6008-5/17/$31.00 c© 2017 IEEE

NIC

App

λ1

λ1

λ2

state-aware split

RSS

S1

S1

S1

enif-lang application layer

NIC

Fig. 1. The Enif–Lang abstract processing model

of usage for Enif–Lang while Section V draws conclusions and
final remarks.

II. ENIF–LANG AT A GLANCE

Enif–Lang is a functional language entirely implemented
as a declarative Domain Specific Language (DSL) on top
of the Haskell Language and it is designed to ease the
implementation of network applications by leveraging a strong
type–safe system and the functional composition typical of
functional programming languages.

Figure 1 shows the full Enif–Lang abstract processing
model. Packets retrieved at physical network interfaces tra-
verse a splitting layer that provides per–flow consistency
within the number of processing resources and are injected
into the processing engines (the λi blocks in the picture). At
this stage, the pipelines of computation are executed according
to the formal description provided by Enif–Lang and packets
are finally forwarded to the selected endpoints, i.e., to network
cards, application threads, the OS kernel, etc..

In Enif–Lang, pipelines are formally expressed as the com-
position of effectful functions, called actions, that perform
network operations on top of packets. In analogy with its
predecessor PFQ–Lang [9], Enif–Lang actions are formally
modelled around the concept of monad, a structure borrowed
from the Category Theory and widely used in other languages,
such as Haskell, Scala etc. In short, monads provide the
theoretical support for composing effectful functions (such as
those performing I/O, those that handle a state associated with
a packet or a flow, and so on) while maintaining the language
functionally pure. Enif–Lang actions include the most common
packet processing primitives for packet forwarding, filtering,
steering, logging and statistics retrieval.

At the time of writing, an open–source experimental imple-
mentation of the reference architecture exists within the PFQ
framework [5] for the Linux operating system. In particular,
an experimental compiler is used to produce intermediate
representations of Enif–Lang programs that can be injected
end executed at the kernel level. In addition, the PFQ kernel

module offers a wide set of primitives implemented in the C
language which are functionally composed at runtime accord-
ing to the Enif–Lang source code.

The rest of the section describes the basic grammar and
syntax of the language along with simple snippets for its
practical usage.

A. Functions overview

Enif–Lang is equipped with a set of built–in primitives
as well as a more complete library of functions to describe
generic processing pipelines. In the following, such functions
are roughly divided into different categories according to their
purposes.

Predicates. Predicates are pure functions that take an ar-
bitrary number of arguments (possibly none) plus the current
packet and return a Boolean value. Such functions are either
used within the if-then-else statement, or passed as
argument to high–order–functions to specialize their behavior.

The language implements a set of primitive predicates (that
cannot be directly implemented in Enif–Lang) that compose
together to implement more complex ones.

The default library includes predicates for the most common
protocols. As a convention, the names of such functions are
prefixed by is_ or has_, when meaningful.

Examples are is_tcp, is_udp, is_icmp,
is_rtp, is_sip, is_gtp or has_port 80,
has_addr "192.168.0.0/24".

Combinators. Enif–Lang provides a set of combinators,
that is functions designed to combine predicates together. In
particular, the composition of predicates is enabled by the
logical or, and, xor and not functions.

Properties. Properties are functions designed to return a
value associated with a packet. Typical examples are hash
functions computed over a portion of a packet, header field ex-
tractors, state retrievals, etc. The Enif–Lang library is equipped
with a wide gamma of property functions for the most common
protocols (ip, tcp, udp, icmp), as well as with generic functions
that extract the field value of arbitrary protocols (by specifying
the offset and the size of the field). For example, proper-
ties of the IP header are: ip_ttl, ip_tot_len, ip_id,
ip_frag, ip_ttl.

Comparators. Properties are meaningful only when used
with comparators, namely functions that perform a comparison
between a given property and a specified value. In addition to
the standard operators <, <=, >, >=, == and /=, the library
offers any_bit and all_bit functions to check whether
some (or all) bits of a given mask are set. As an example, the
expression any_bit ip_tos 0x3f is a valid Enif–Lang
predicate that tests whether any of the DSCP bits are set in
the packet.

Filters. Filters are effectful functions that break the pipeline
processing when the packet does not match a given condition.
The Enif–Lang library is equipped with a wide range of filters
for the most common protocols. In a nutshell, a filter is a
very simple monadic function, whose output action can be
either Pass or Drop. Examples of common filters are ip, tcp,

udp, port, src_port, dst_port, addr, src_addr,
dst_addr, etc.

Monadic functions. Monadic functions take an arbitrary
number of arguments and a packet, and return a packet with
an associated action. Currently, the available actions are:
Pass, Drop (used by filters), Broadcast, Dispatch, Steer and
DoubleSteer (used by steering functions).

Common monadic functions are when and unless, used
in conditional statements as well as the family of steering func-
tions, such as steer_flow, steer_p2p, steer_link,
etc., used to balance the traffic among multiple endpoints with
different flow consistency guarantees.

III. PROCESSING PIPELINES

Actions can be composed together by means of the do
notation (slightly different from that of Haskell), or through
the Kleisli operator >->, and follow the precise rules of
composition set forth in [9]. The overall expressiveness of
Enif–Lang allows to build even complex pipelines through a
very concise grammar. As a first example, the following simple
program:

main = udp >-> log >-> kernel

describes a stateless filter that allows UDP packets to be
logged and passed back to the kernel of the operating system.

The next snippet of code, instead, provides a more complex
example in which the processing pipeline takes advantage of
a per–computation state.

http = dst_port 80
pass_to_kernel =

when (has_state http_traffic)
kernel

mirror_to_port =
when (has_state other_traffic)

(forward eth2)
process = if (not is_tcp)

then drop
else do pass_to_kernel

mirror_to_port)
http_traffic = 1
other_traffic = 2
main = do

if http
then put_state http_traffic
else put_state other_traffic

process

From the language point of view, functions like
put_state, get_state and the predicate has_state
are implemented as properties and act as an implicit extra
parameter for all of the pipeline functions. In the current
implementation (within PFQ) such a state is eventually passed
to the kernel as a mark of the socket–buffer to enable further
manipulations of the packet with netfilter. However, the
usage of the per–packet state is somewhat limited as it vanishes
after the packet computation expires. As such, it cannot be

used in processing pipelines that require the storage of stateful
information across different packets. The solution of this issue
is represented by per–flow persistent states and is described in
the next section.

A. Stateful Pipelines

Generally speaking, stateful operations in parallel architec-
tures require an effective management of potential data sharing
across multiple threads of execution to avoid race conditions.
In the case of stateful processing pipelines, this would be
the case of different packets belonging to the same flow but
processed by different cores.

It turns out that it is possible to tackle the problem in a
general and effective way by restricting the association of
stateful information to packet flows only. As a consequence,
in many practical applications it is to possible to partition a–
priori the traffic and let all the computations process flows of
packets in parallel and total isolation.

The central concept is here represented by a suitable defi-
nition of packet flow. Packet flows are defined through flow–
keys (e.g. IP addresses, canonical 5–tuples, and so on). In
the Enif–Lang context, a generic flow–key consists of the
concatenation of an arbitrary number of packet header fields.
Different pipelines may operate onto different types of flows,
all of them specified by their own flow–keys. The bitwise
intersection of all such keys represents the common flow–key
and can be used upon hashing at the splitting stage (see Figure
1) to distribute packets to functional engines. Once traffic is
split, the current abstraction guarantees that packets of a flow
are processed in the Enif–Lang stage sequentially and on a
single core. This automatically ensures the flow consistency
for all the packets and their related states and prevents from
data–sharing among cores. Notice that multiple Enif–Lang
programs can instead run in parallel (on different cores) thanks
to the immutability of packets.

However, it is worth noticing that not all configurations
can be parallelized as the common flow–key might be empty.
This special case can be conveniently handled by partitioning
the applications in clusters of common sub–keys and by
introducing shallow copies of packets to feed each of them.

From the language point of view, Enif–Lang provides a
persistent per–flow state that is automatically handled by the
underlying abstract processing model. A per–flow persistent
state is a state shared among all packets that belong to a certain
flow. Such a state information is stored in associative flow–
maps, indexed by their own flow–keys.

The Enif–Lang library provides several functions for the
per–flow state management. In general, all such functions
take a flow map object that contains a table identifier and
a flow–key definition. Furthermore, the language offers a set
of predefined keys as well as utilities for building custom keys
through concatenation of arbitrary header fields. In particular,
the function set_fstate is used to set the value of the
state associated with the flow of a packet. Instead, the function
get_fstate retrieves the value of the state associated with
the flow the packet belongs to. Other additional functions,

such as incr_fstate, decr_fstate, add_fstate, etc.
are used to update the state information. It is worth noticing
that Enif–Lang does not limit the number of state tables
whose maximum number is instead enforced by the underlying
implementation.

IV. USE–CASES

This section presents the use of Enif–Lang in two practical
applications. The first application is an example of stateless
processing and consists of a simple load–balancer that for-
wards packets to a cluster of network devices or local appli-
cations running Deep Packet Inspection. The second example,
instead, provides the Enif–Lang implementation of the simple
stateful firewall based on the port knocking scheme.

A. Stateless processing

DPI applications typically take advantage of DNS packets to
build classification trees and improve application recognition.
As such, the following load–balancer broadcasts DNS packets
to all DPI workers and randomly spreads the remaining pack-
ets according to steer_p2p stering function that preserves
layer 3 symmetric flow consistency.

is_dns = has_port 53
main = if is_dns

then broadcast
else steer_p2p

B. Stateful processing

In the following, the simple port knocking application is
presented. The problem, already described in [7], is to create
a simple firewall that permits certain flows to pass only if
a known sequence of TCP packets hit predefined ports (port
numbers 5123, 6234, 7345 and 8456 in the example).

The example uses a couple of tables. The first table lists
the authorized flow and is implemented as an associative map
based on the classic 5-tuple key (predefined as TUPLE 5). The
second table, instead, is based on the 3-tuple keys (IP SRC,
IP DST and PROTOCOL, defined as TUPLE 3) and imple-
ments the state machine for tracking the knocking sequence.
Any time the expected destination port is found, the state is
updated through the function next_if until it reaches the
state value 4 which opens the firewall and the corresponding
flow is authorized in the auth_flow table.

auth_flow = flow_map 0 TUPLE_5
knock_table = flow_map 1 TUPLE_3
next_if pred =

if pred
then incr_fstate knock_table
else set_fstate knock_table 0

main =
if (get_fstate auth_flow)
then kernel
else case_of (get_fstate knock_table) $ with
[0 ˜> next_if (dst_port. == 5123) >-> drop
, 1 ˜> next_if (dst_port. == 6234) >-> drop
, 2 ˜> next_if (dst_port. == 7345) >-> drop
, 3 ˜> next_if (dst_port. == 8456) >-> drop
, 4 ˜> do

next_if (dst_port. == 22)
when (set_fstate knock_table. == 0)
(set_fstate auth_flow 1 >-> kernel)

]

V. CONCLUSION

The paper presents Enif–Lang a functional language for
stateful processing pipelines on multi–core platforms. The
language is grounded upon the theoretical framework of mon-
ads borrowed from Category Theory and provides a formal
description of a generic processing machine for network
traffic manipulation. In particular, the programming model
allows the automatic parallelism of processing pipelines thanks
to the immutability of packets, enforced by the functional
paradigm, and to a suitable state aware traffic splitting across
multiple computation resources. A few examples are reported
in the paper to exemplify the language practical usage. The
description of two simple but real applications is also given
to show the expressiveness of the description of both stateless
and stateful processing pipelines.

ACKNOWLEDGMENT

This work has been partly supported by the EU project
Behavioral Based Forwarding (BEBA, Project ID: 644122).

REFERENCES

[1] F. Fusco and L. Deri, “High speed network traffic analysis with
commodity multi–core systems,” in Proc. of IMC ’10. ACM, 2010,
pp. 218–224.

[2] L. Deri, “PF RING ZC (Zero Copy).” [Online]. Available: http:
//www.ntop.org/products/packet-capture/pf ring/pf ring-zc-zero-copy/

[3] L. Rizzo, “Netmap: a novel framework for fast packet i/o,” in Proc. of
USENIX ATC’2012. USENIX Association, 2012, pp. 1–12.

[4] “DPDK.” [Online]. Available: http://dpdk.org
[5] N. Bonelli, S. Giordano, and G. Procissi, “Network traffic processing

with PFQ,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 6, pp. 1819–1833, June 2016.

[6] N. McKeown et al., “Openflow: Enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
Mar. 2008.

[7] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate:
Programming platform-independent stateful openflow applications inside
the switch,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, pp. 44–
51, Apr. 2014.

[8] “The BEBA (Behavioral Based Forwarding) H2020 EU project.”
[Online]. Available: http://beba-project.eu/

[9] N. Bonelli, S. Giordano, G. Procissi, and L. Abeni, “A purely functional
approach to packet processing,” in Proceedings of the Tenth ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems, ser. ANCS ’14. New York, NY, USA: ACM, 2014, pp. 219–230.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[11] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker,
“Composing software-defined networks,” in Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation,
ser. nsdi’13. Berkeley, CA, USA: USENIX Association, 2013, pp. 1–14.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2482626.2482629

[12] “The Frenetic Project.” [Online]. Available: http://frenetic-lang.org/
[13] W. de Bruijn, H. Bos, and H. Bal, “Application-Tailored I/O with

Streamline,” ACM Trans. Comput. Syst., vol. 29, no. 2, pp. 6:1–6:33,
May 2011. [Online]. Available: http://doi.acm.org/10.1145/1963559.
1963562

[14] “VPP.” [Online]. Available: https://wiki.fd.io/view/VPP
[15] “Linux Enhanced BPF (eBPF) Tracing Tools.” [Online]. Available:

http://www.brendangregg.com/ebpf.html

